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Abstract 
 

This article proposes a synthesized classification of some Goldbach-like conjectures, including those 
which are �stronger� than the Binary Goldbach�s Conjecture (BGC)  and launches a new generalization of 
BGC briefly called �the Vertical Binary Goldbach�s Conject ure� (VBGC), which is essentially a meta-
conjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on 
�iterative� primes with recursive prime indexes (i-prim eths). VBGC was discovered by the author of this 
paper in 2007 and perfected (by computational verifications) until 2017 by using the arrays of matrices of 
Goldbach index-partitions, which are a useful tool in studying BGC by focusing on prime indexes. VBGC 
distinguishes as a very important conjecture of primes, with potential importance in the optimization of 
the BGC experimental verification (including other possible theoretical and practical applications in 
mathematics and physics) and a very special self-similar property of the primes set.  
 

 
Keywords: Primes with prime indexes; i-primeths; the Binary Goldbach Conjecture; Goldbach-like 

conjectures; the Vertical Binary Goldbach Conjecture.  
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2010 mathematics subject classification: 11N05 (Distribution of primes,  
URL: http://www.ams.org/msc/msc2010.html?t=11N05&btn=Current) 
 

1 Introduction 
 
This paper proposes the generalization of the binary (strong) Goldbach�s Conjectures (BGC) [1-7], briefly 
called �the Vertical Binary Goldbach�s Conjecture� ( VBGC), which is essentially a meta-conjecture, as 
VBGC states an infinite number of conjectures stronger than BGC, which all apply on �iterative� primes 
with recursive prime indexes named �i-primeths� in this a rticle, as derived from the concept of generalized 
�primeths�, a term first introduced in 1995 by N. J. A. Slo ane and Robert G. Wilson in their �primeth 
recurrence� concept in their array of integers indexed as A00 7097 (formerly M0734) [8] in The Online 
Encyclopedia of Integer Sequences (Oeis.org); the term �pr imeth� was then used from 1999 by Neil 
Fernandez in his �The Exploring Primeness Project� [9]) . The �i-primeth� concept is the generalization with 

iteration order 0i ≥  of the known �higher-order prime numbers� (alias �super-prime numbers�, �super-
prime numbers�, �super-primes�, � super-primes� or �prime-in dexed primes[PIPs]�) as a subset of 

(simple or recursive) primes with (also) prime indexes, with 
i

xP  being the x-th i-primeth, with iteration 

order 0i ≥ , as noted in this paper and explained later on.  
 

VBGC was discovered in 2007 and perfected until 2017 by using the arrays ( pS  and ,i pS ) of Matrices 

(M) of Goldbach index-partitions (GIPs) (simple ,p nM  and recursive , ,i p nM , with iteration order 0i ≥
, also related to the concept of �i-primeths�), which ar e a useful tool in studying BGC/VBGC by focusing on 

prime indexes (as the function nP  that numbers the primes is bijective).  

 
There are a number of (relative recently discovered) GLCs stronger than BGC (and implicitly stronger than 

TGC), that can also be synthesized using ,p nM  concept:  these stronger GLCs (as VBGC also is) are 

tools that can inspire new strategies of finding a formal proof for BGC, as I shall try to argue in this 
paper. Additionally, there are some arguments that Twin Prime Conjecture (TPC) may be also (indirectly) 
related to BGC as part of a more extended and profound conjecture, so that any new clue for BGC formal 
proof may also help in TPC (formal) demonstration.  
 
The author of this article also brings in a S-M-synthesis of some Goldbach-like conjectures (GLC) 
(including those which are �stronger� than BGC) and a new c lass of GLCs �stronger� than BGC, from 
which VBGC (which is essentially a variant of BGC applied on a serial array of subsets of i-primeths with a 

general iteration order 0i ≥ ) distinguishes as a very important conjecture of primes (with potential 
importance in the optimization of the BGC experimental verification and other possible useful theoretical 
and practical applications in mathematics [including cryptography and fractals] and physics [including 

crystallography and M-Theory]), and a very special self-similar property of the primes subset of N
(noted/abbreviated as℘  or as explained later on in this paper). 

 
Primes (which are considered natural numbers [positive integers] >1 that each has no positive divisors 
other than 1 and itself (like 2, 3, 5, 7, 11 etc) by the latest modern conventional definition, as number 1 is a 
special case [10,11] which is considered neither prime nor composite, but the unit of all integers) are 

conjectured (by BGC) to have a sufficiently dense and (sufficiently) uniform distribution in N , so that:  
 

(1) Any natural even number 2 , 1n with n > can be splitted in at least one Goldbach 

partition/pair(GP)corresponding to at least one Goldbach index-partition (GIP) [12].  
 

*℘
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Or  

(2)  Any positive integer 1n >  can be expressed as the arithmentic average of at least one pair of 

primes. 
 
BGC is specifically reformulated by the author of this article in order to emphasize the importance of 
studying the Primes Distribution (PD) [13,14,15,16]  defined by a global and local density and uniformity 

with multiple interesting fractal patterns [17]: BGC is in fact an auto-recursive fractal property of PD in N  
alias the Goldbach Distribution of Primes (GDP) (as the author will try to argue later on in this article), but 
also a property of ℘ , a property which is indirectly expressed as BGC, using the subset of even naturals).  
 

2 The Array pS  of the Simple Matrix of Goldbach Index-Partitions 

( ),p nM   
 
Definition of *℘  and ℘ . We may define the prime subset of N  as *℘ =  

( ) ( ) ( ){ }1 2 32 , 3 , 5 ,..., ,..., ,...x yP P P P P P∞= = = , with , * 0x y N and x y∈ < < , with 

( )x yP P  being the x-th (y-th) primes of *℘  and P∞  marking the already proved fact that *℘  has an 

infinite number of (natural) elements (Euclid’s 2nd theorem [18]). The numbering function of primes ( )nP  

is a bijection that interconnects *℘  with *N  so that each element of *℘  corresponds to only (just) one 

element of *N  and vice versa: ( )11 2P↔ = , ( )22 3P↔ = , ..., xx P↔  (the x-th prime), yy P↔  

(the y-th prime), �, P∞∞ ↔ . Originally, Goldbach considered that number 1 was the first prime: 

although still debated until present, today the mainstream considers that number 1 is neither prime nor 
composite, but the unity of all the other integers. However, in respect to the first "ternary" formulation of GC 
(TGC) (which was re-formulated by Euler as the BGC and also demonstrated by the same Euler to be 

stronger than TGC, as TGC is a consequence of BGC), the author of this article also defines 0 1P =  (the 

unity of all integers, implicitly the unity of all primes) and ℘=
( ) ( ) ( ) ( ){ }0 1 2 31 , 2 , 3 , 5 ,..., ,..., ,...x yP P P P P P P∞= = = = , with , 0x y N and x y∈ ≤ < , although 

only *℘ = ( ){ }0 1P =℘−  shall be used in this paper (as it is used in the mainstream of modern 

mathematics). 
 

The 1st formulation of BGC. For any even integer 2n > , it will always exist at least one pair of (other 

two) integers , *x y N with x y∈ ≤  so that x yP P n+ = , with ( )x yP P  being the x-th (y-th) primes of 

*℘ . Important observation: The author considers that analyzing those �homogeneous� tri plets of three  

naturals ( ), ,n x y  (no matter if primes or composites) is more convenient and has more �analytical� 

potential than analyzing (relatively) �inhomogeneous� triple ts of type ( ), ,x yn P P : that�s why the author 

proposes Goldbach index partitions (GIPs) as an alternative to the standard Goldbach partitions (GPs) 

proposed by Oliveira e Silva. The existence of (at least) a triplet ( ), ,n x y  for each even integer 2n >  

(as BGC claims) may suggest that BGC is profoundly connected to the generic primality (of any xP  and 

yP ) and, more specifically, argues that GC is in fact a property of PD in N  (and a property of *℘  as 
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composed of indexed/numbered elements). The most important property of Primes and PD and is that 

 or ( )ln ,xP x x forany progressivelylarge x≅ ⋅  

(which is the alternative [linearithmic] expression of the Prime Number Theorem [19], as if *℘  is a result 

of an apparently random quantized linearithmization of { }* 1N −  so that ( )lnnP n n→ ⋅ . In 

conclusion: For any even integer 2n > , at least one GIP exists (BGC � 1 st condensed formulation). 

 
The 2nd formulation of BGC using the Matrix of Goldbach index-partitions (M-GIP or M).  
 

[1] Let us consider an infinite string of matrices { }1 2 3, , ,..., ,...nS M M M M M∞= , with each generic 

nM  being composed of lines made by GIPs ( ),x y , such as: 

 

 

 

( j  is the index of any chosen line of nM , j 1≥ and j nm≤ ) 

( nm  is the total maximum number of j-indexed lines of nM ) 

(xn,i,yn,i *N∈  , xn,i < xn,i+1 for 2nm ≥ , [ ] 1, ni m∀ ∈ ) 

 

[2] Let us also consider the function that counts the lines of any nM , such as: ( ) nl n m= . This function 

(that numbers the lines of a GM) is classically named as ( ) ( ) nr n l n m= =  (�r� stands for the number 

of �rows�) . 
 

[3] An empty/null matrix ( )M ∅  is defined as a matrix with zero rows and/or columns. 

 

Using S , M , M∅  and ( )r n  as previously defined, BGC has two formulations sub-variants: 

 

1. nM M∅≠  (OR S  doesn�t contain any M∅ ) for any even integer 2n >  or shortly: 

2 neven integer n M M∅∀ > ⇔ ≠  (the 2nd  formulation of BGC � 1 st sub-variant). 

2. For any even integer 2n > , ( ) 0r n >  or shortly: 2 ( ) 0even integer n r n∀ > ⇔ >  (the 

2nd  formulation of BGC � 2 nd sub-variant). 

( ) ( )ln / ln ,x xP x x P x x for x→ ⋅ ⇔ → →∞

[ ]
, ,

,1 ,1

, ,

, ,

, with ,   j 1,n n j n j

n n

n n

x y nn j n j

n m n m

x y

x yM P P n m

x y

� �
� �
� �
� �= + = ∀ ∈� �
� �
� �
� �
� �

� �

� �
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The 3rd formulation of BGC using the generalization of S ( )pS  and the generalization of M

( ),p nM  for GIPs matrix containing more than 2 columns (as based on GIPs with more than 2 

elements).  
 
[1] Let us consider an infinite set OF infinite strings OF matrix:  
 

a) { }2 2,1 2,2 2,3 2 2, ,, , ,..., ,...nS M M M M M ∞=  (the generic 2,nM  of 2S  has 2 columns based 

on [binary] GIPs with 2 elements); 

b) { }3 3,1 3,2 3,3 3,3,, , ,..., ,...nS M M M M M ∞=  (the generic 3,nM  of 3S  has 3 columns based on 

[ternary] GIPs with 3 elements); 
c) �; 

d) { },1 ,2 ,3 , ,, , ,..., ,...p p n pp p pS M M M M M ∞=  (the generic ,p nM  of pS  has p columns 

based on [p-nary] GIPs with p elements and natural p>3);  
e) �,  

f) { },1 ,2 ,3 , ,, , ,..., ,...nS M M M M M∞ ∞ ∞∞ ∞ ∞ ∞=  (the generic ,M n∞  of S∞  has potentially 

infinite ( )∞  number of columns based on nary∞−  GIPs with a potentially infinite ( )∞  

number of elements) 

g) With each generic ,p nM  being composed of ,p nm  lines and p columns made by p-nary GIPs 

with p elements, such as: 
 

 ( j  is the index of any chosen line of ,p nM , 1j ≥  and ,p nj m≤   

and ,p nm  is the total maximum number of j-indexed lines of ,p nM ) 

( k  is the index of any chosen column of ,p nM , k 1≥  and k p≤   

and p  is the total number of k -indexed columns of ,p nM ) 

( , , , 1n j n jx x +≤  for , 2p nm ≥ , [ ], j 1,  k 1,p nm and p� �∀ ∈ ∀ ∈	 
 ) 

 

[2] Let us also consider the function that counts the lines of any ,p nM , such as: 

. 

 

[ ]

,1

, ,,

, ,,

,,

, ,,,

, ,,

,

... ...

... ... , with ... ... ,  

... ...

 j 1,  1, ,

n j n p jn j k

p n p np n

n pn n k

n j n p jn k jp n x x x

n m n p mn k m

p n

x x x

x x xM P P P n

x x x

m and k p

++++

++

� �
� �
� �
� �

= + + + + =� �
� �
� �
� �
� �

� �∀ ∈ ∀ ∈	 


� � � � �

� � � � �

, *n k jx N+ ∈

,( , ) ( , ) p nr p n l p n m= =
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Using pS , ,p nM , M∅  and ( , )r p n  as previously defined, BGC has two formulations sub-variants: 

 

1. 2,nM M∅≠  (OR 2S  doesn�t contain any M∅ ) for any even integer 2n >  or shortly: 

2,2 neveninteger n M M∅∀ > ⇔ ≠  (the 3rd  formulation of BGC � 1 st sub-variant). 

2. For any even integer 2n > , (2, ) 0r n >  or shortly: 2 (2, ) 0even integer n r n∀ > ⇔ >   

(the 3rd  formulation of BGC �2 nd sub-variant). 
 
 

3 A Synthesis and A/B Classification of the Main Known Goldbach-like 
Conjectures (GLCs) Using the ,p nM  Concept 

 
3.1 The Goldbach-like conjectures (GLCs) category/class 

 
GLCs definition. A GLC may be defined as any additional special (observed/conjectured) property of pS  

and its elements ,p nM  other that GC (with 2n > ), with possibly other inferior limits 2a ≥ , with  

2n a> ≥ ). 
 

GLCs classification. GLCs may be classified in two major classes using a double criterion such as: 
 

1. Type A GLCs (A-GLCs) are those GLCs that claim: [1] Not only that all ,p nM M∅≠   for a 

chosen p>1 and for any / any odd / any even integer 2n a> ≥  (with a  being any finite natural 
established by that A-GLC and n a> ) BUT ALSO [2] any other non-trivial(nt) accessory 

property/properties of all ( ),p nM M∅≠  of pS . A specific A-GLC is considered authentic if the 

other non-trivial accessory property/properties of all ( ),p nM M∅≠  (claimed by that A-GLC) 

isn�t/aren�t a consequence of the 1 st claim (of the same A-GLC). Authentic (at least conjectured as 
such) A-GLCs are (have the potential to be) �stronger� than G C as they claim �more� than GC 
does. 

 

2. Type B GLCs (B-GLCs) are those GLCs that claim: no matter if all ,p nM M∅≠  or just some 

,p nM M∅≠  for a chosen p>1 and for some / some odd / some even integer 2n a> ≥  (with a   

being any finite natural established by that B-GLC and n a> ), all those ,p nM  that are yet non-

M∅  (for n a> ) have (an)other non-trivial accessory property/properties. A specific B-GLC is 

considered authentic if the other non-trivial accessory property/properties of all ( ),p nM M∅≠  

(claimed by that B-GLC for n a> ) isn�t/aren�t a consequence of the fact that some 

,p nM M∅≠  for n a> . Authentic (at least conjectured as such) B-GLCs are �neutr al� to GC 

(uncertainly �stronger� or �weaker� conjectures) as they clai m �more� but also �less� than GC 
does (although they may be globally weaker and easier to formally prove than GC). 
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Other variants of the (generic) Goldbach Conjecture (GC) and GLCs include the statements that: 
 

1. � [�] Every [integer] number that is greater than 2 is the sum of three primes� (Goldbach’s original 
conjecture formulated in 1742, sometimes called the "Ternary" Goldbach conjecture (TGC), 
written in a June 7, 1742 letter to Euler) (which is equivalent to: �every integer >2 is the sum of at 
least one triad of primes*�, *with the specification that n umber 1 was also considered a prime by 
the majority of mathematicians contemporary to Goldbach, which is no longer the case now]� ). 

This (first) variant of GC (TGC) can be formulated using (ternary) 3,nM  (based on GIPs with 3 

elements) such as: 
 

a. Type A formulation variant as applied to ( *)not just to℘ ℘ :  

� 3,2 ninteger n M M∅∀ > ⇔ ≠  (with , , 0n j kx ≥  and 
, ,n j kxP ∈℘ )�  

b. Type B (neutral) formulation variant: not supported. 
 

2. � Every even integer 4n >  is the sum of 2 odd primes.� (Euler�s binary reformulation of the 
original GC, which was initially expressed by Goldbach in a ternary form as previously explained). 
Since BGC (as originally reformulated by Euler) contains the obvious triviality that there are 
infinite many even positive integers of form 2 p p p= +  (with p  being any prime), the non-

trivial BGC (ntBGC) sub-variant that shall be treated in this paper (alias �BGC� or �ntBGC�) is 

that: �e very even integer 6n >  is the sum of at least one pair of distinct odd primes� [20,21]  

(which is equivalent to: �every even integer 3m >  is the arithmetic average of at least one pair 
of distinct odd primes� ). Please note that ntBGC doesn�t support the definition of a GLC, as 
2 p p p= +  is a trivial property of some even integers implying the complementary relative 

triviality that: 2 2c p p p≠ ≠ +  (with c  being any composite natural number and p  being any 

prime). ntBGC can be formulated using (binary) 2,nM  (based on GIPs with 2 elements) such as: 

 

a. Type A formulation variant: � 6even integer n∀ > , ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with both elements (GIPs)�1 (as 1 2P =  is the only 

even prime) AND distinct to each other (as distinct GIPs means distinct primes as based on the 
bijection of the prime numbering function)�  

b. Type B (neutral) formulation variant: � 6even integer n∀ > , all ( )2, nnM M  that are 

non-empty (as pS  may also contain empty ( )2, nnM M M∅=   for some specific [but still 

unfound] n  values ) will contain at least one line with both elements (GIPs)�1 (as 1 2P =  is 

the only even prime) AND distinct to each other (as distinct GIPs means distinct primes as 
based on the bijection of the prime numbering function)�.  
 

3. � 5odd integer n∀ > , n  is the sum of 3 (possibly identical) primes.� [22] (the [weak] Ternary 

Goldbach’s conjecture/theorem [TGC/TGT] formally proved by Harald Helfgott in 2013  
[23,24,25], so that TGC is very probably [but not surely however] a proved theorem (as TGT), and 

no longer a �conjecture�) (which is equivalent to: � 5odd integer n∀ > , n   is the sum of at 

least one triad of [possibly identical] primes� ). TGC can be formulated using (ternary) 3,nM  

(based on GIPs with 3 elements) such as: 
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a. Type A formulation variant: � 3,5 nodd integer n M M∅∀ > ⇔ ≠ �  

b. Type B (neutral) formulation variant: not supported. 
 

4. � 17integer n∀ > , n  is the sum of exactly 3 distinct primes.� (cited as �Conjecture 3.2� by 

Pakianathan and Winfree in their article, which is equivalent to: � 17integer n∀ > , n  is the 

sum of at least one triad of distinct primes� ) (this is a conjecture stronger than TGC, but weaker 
than BGC as it is implied by BGC). This stronger version of TGC (sTGC) can also be formulated 

using (ternary) 3,nM  (based on GIPs with 3 elements) such as: 

 

a. Type A formulation variant: � 17integer n∀ > � 3,nM M∅≠  AND 3,nM  contains 

at least one line with all 3 elements (GIPs) distinct from each other�  

b. Type B (neutral) formulation variant: � 17integer n∀ > �  those 3,nM  which are 

M∅≠  will contain at least one line with all 3 elements (GIPs) distinct from each other�  

 

5. � 5odd integer n∀ > , n  is the sum of a prime and a doubled prime [which is twice of any 

prime].� (Lemoine�s conjecture [ LC] [26,27]   which was erroneously attributed by MathWorld to 
Levy H. who pondered it in 1963 [28,29]. LC is stronger than TGC, but weaker than BGC. LC also 
has an extension formulated by Kiltinen J. and Young P. (alias the "refined Lemoine conjecture" 
[30]), which is stronger than LC, but weaker than BGC and won�t be discussed in this article (as 
this paper mainly focuses on those GLCs stronger than BGC). LC can be formulated using (ternary, 

not binary) 3,nM  (based on GIPs with 3 elements) such as: 

 

a. Type A formulation variant: � 5odd integer n∀ > � 3,nM M∅≠  AND 3,nM  

contains at least one line with at least 2 identical elements (GIPs)�  

b. Type B (neutral) formulation variant: � 5odd integer n∀ > � those 3,nM  which are 

M∅≠   will contain at least one line with at least 2 identical elements (GIPs)�  

 
6. There are also a few original conjectures on partitions of integers as summations of primes 

published by Smarandache F. [31] that won�t be discussed in this article, as these conjectures depart 
from VBGC (as VBGC presentation is the main purpose of this article). 
 

There are also a number of (relative recently discovered) GLCs stronger than BGC (and implicitly stronger 

than TGC), that can also be synthesized using ,p nM  concept:  these stronger GLCs (as VBGC also is) 

are tools that can inspire new strategies of finding a formal proof for BGC, as I shall try to argue next. 
Additionally, there are some arguments that Twin Prime Conjecture (TPC) [32] (which states that � there is 

an infinite number of twin prime (p) pairs of form ( ), 2p p + � ) may be  also (indirectly) related to BGC as 

part of a more extended and profound conjecture [33,34,35], so that any new clue for BGC formal proof may 
also help in TPC (formal) demonstration. Moreover, TPC may be weaker (and possibly easier to proof) than 
BGC (at least regarding the efforts towards the final formal proof) as the superior limit of the primes gap 
was recently �pushed� to be �246  [36], but the Chen’s Theorem I (that �every sufficiently large even 
number can be written as the sum of either 2 primes, OR a prime and a semiprime [the product of just 2 
primes]�   [37,38,39]  ) has not been improved since a long time (at least by the set of proofs that are accepted 
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in the present by the mainstream) except Cai�s new proved theorem published in 2002 (� There exists a 
natural number N such that every even integer n larger than N is a sum of a prime � n0.95 and a semi-prime� 
[40,41]  , a theorem which is a similar but a weaker statement than LC that hasn�t a formal proof yet). 

 
1. The Goldbach-Knjzek conjecture [GKC]  [42] (which is stronger than BGC):  �

4even integer n∀ > , there is at least one prime number p  [so that] / 2n p n< ≤  and 

q n p= −  is also prime [with n p q= + implicitly]�.  GKC can also be reformulated as: � every 

even integer 4n >  is the sum of at least one pair of primes with at least one element in the semi-

open interval �. GKC can be also formulated using (binary) 2,nM  (based on GIPs 

with 2 elements) such as: 
 

a. Type A formulation variant: � 4even integer n∀ > � ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with at least one element x , so that ( , / 2xP n n �∈ 

.� 

b. Type B (neutral) formulation variant: � 4even integer n∀ > �  those ( )2, nnM M  

which are M∅≠  will contain at least one line with at least one element x , so that 

( , / 2xP n n �∈ 

.� 

 
2. The Goldbach-Knjzek-Rivera conjecture [GKRC]  [43] (which is obviously stronger than BGC, 

but also stronger than GKC for 64n ≥ ): � 4even integer n∀ > , there is at least one prime 

number p  [so that] 4n p n< <  and q n p= −  is also prime [with n p q= +
implicitly]�.  GKRC can also be reformulated as: � 4even integer n∀ > , n  is the sum of at 

least one pair of primes with one element in the double-open interval ( ), 4n n �. GKRC can be 

formulated using (binary) 2,nM   (based on GIPs with 2 elements) such as: 

 

a. Type A formulation variant: � 4even integer n∀ > � ( )2, nnM M M∅≠  AND 

( )2, nnM M  contains at least one line with one element x , so that ( ), 4xP n n∈ .� 

b. Type B (neutral) formulation variant: � 4even integer n∀ > � those ( )2, nnM M  

which are M∅≠  will contain at least one line with one element x , so that ( ),4xP n n∈ .� 

 

3. Any other GLC that establishes an additional inferior limit 0a >  for ( )2,r n  so that 

( )2, 0r n a≥ >  (like Woon�s GLC [44]) can also be considered stronger that BGC, as BGC only 

suggests ( )2, 0r n >  for any even integer 6n >  (which implies a greater average number of 

GIPs per each n  than the more selective Woon�s GLC does). 
 

( , / 2n n �
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There is also a remarkable set of original conjectures (many of them stronger than BGC and/or TPC) 
originally proposed by Sun Zhi-Wei [1,2]  [45,46], a set from which I shall cite [3] (by rephrasing) some of 
those conjectures that have an important element in common with the first special case of VBGC: the 

recursive 
xPP function in which xP  is the x-th prime and 

xPP  is the xP -th prime (which is denoted in the 

next cited conjectures as qP  which is the q-th prime, with q being also a prime number). 

 

1. Conjecture 3.1 (Unification of GC and TPC, 29 Jan. 2014). For any integer 2n >  there is at 

least one triad of primes ( ) ( ) ( )21 2 1 , 2 , 2qq n n q P +
� �< < − − +
� 	 


 (Sun�s Conjecture 3.1 

[SC3.1 or U-GC-TPC], which is obviously stronger than BGC and was tested up to 82 10n = × ) 
 

2. Conjecture 3.2 (Super TPC [SPTC], 5 Feb. 2014). For any integer 2n >  there is at least one 

triad ( ) ( ) ( )0 , 2 , 2
n kPkk n P prime P prime−

� �< < + = + =
	 


 (Sun�s Conjecture 3.2 [SC3.2 

or SPTC], which is obviously stronger than TPC and was tested up to 910n = ) [4,5] 
 

3. Conjecture 3.3 (28 Jan. 2014). For any integer 2n >  there is at least one pentad 

 

(Sun�s Conjecture 3.3 [SC3.3], which is obviously stronger than TPC as it implies TPC; SC3.3 was 

tested up to 72 10n = × ) 
 

4. Conjecture 3.7-i (1 Dec. 2013). There are infinite many positive even integers 3n >  which are 
associated with a hexad of primes 

( ) ( ) ( ) ( ) ( ) ( )1 , 1 , , , 1 , 1n n n nn n P n P n nP nP+ − + − + −� �	 
  (Sun�s Conjecture 3.7-1 [SC3.7-

i], which is obviously stronger than TPC as it implies TPC; 22 110n =  is the first/smallest value 
of n  predicted by SC3.7-I) 

 
5. Conjecture 3.12-i (5 Dec. 2013). All positive integers 7n >  have at least one associated pair 

( ) ( )1 , 2k
n kk n P prime−

� �< − + =
	 


 (Sun�s Conjecture 3.12-i [SC3.12-i]) 

 

6. Conjecture 3.12-ii (6 Dec. 2013). All positive integers 3n >  have at least one associated pair 

( ) ( )1 , ! n kk n k P prime−
� �< − + =
	 


 (Sun�s Conjecture 3.12-ii [SC3.12-ii]) 

 
7. Remark 3.19 (which is an implication of the Conjecture 3.19 not cited in this article). There is 

an infinite number of triads of primes ( ) ( ) ( )1 , 1 , 1q rq r P q P r� �> = − + − +
	 
  (Sun�s Remark 

on Sun�s Conjecture 3.19 [SRC3.19]) 

                                                      
[1] Wikipedia page about Sun Zhi-Wei: https://en.wikipedia.org/wiki/Sun_Zhiwei 
[2] The personal page of Sun Zhi-Wei: http://maths.nju.edu.cn/~zwsun/ 
[3] See also Sun�s Z-W. personal web page on which all conjectures are presented in detail. URL:  http://math.nju.edu.cn/~zwsun 
[4] See also the first announcement of this conjecture made by Sun Z-W. himself on 6 Feb 2014). URL: https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;b81b9aa9.1402 
[5] See also the sequence A218829 on OEIS.org proposed by Sun Z-W. URLs: http://oeis.org/A218829;  
http://oeis.org/A218829/graph;   

( ) ( ) ( ) ( ) ( )0 1 , 6 1 , 6 1 , , 2n k n kk n k prime k prime P prime P prime− −
� �< < − − = + = = + =
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8. Conjecture 3.21-i (6 Mar. 2014). For any integer 5n >  there will always exist at least one triad 

( ) ( ) ( )0 , 2 1 , k nk n k prime P k n prime⋅
� �< < + = + ⋅ =
	 


 (Sun�s Conjecture 3.21-i [SC3.21-

i]) 
 

9. Conjecture 3.23-i (1 Feb. 2014). For any integer 13n >  there is at least one triad of primes 

( ) ( ) ( )1 , 2 , 1n qq n q P q−� �< < + + +
	 


 (the Sun�s Conjecture 3.23-i [SC3.23-i]). 

 

4 The �i-primeths� ( *i℘ ) Definition 
 
The definition of the generalized �i-primeths� concept *i℘ . This paper chooses to use the term 
�primeth(s)� because this is the shortest and also the  most suggestive of all the alternatives [6] used until now 
(as the �th� suffix includes, by abbreviation, the idea of �i ndex of primes�). �Primeths� were originally 

defined as a subset of primes with (also) prime indexes (with the numbering of the elements of *℘ starting 

from 1 2P = ). As primes are in fact those positive integers with a prime index (the �prime index� being 

non-tautological defined as a positive integer >1 that has only 2 distinct divisors: 1 and itself), all the 
standard primes may be considered primeths with iteration order i=0 (or shortly: 0-primeths) NOT with i=1 

(as Fernandez first considered) (as the i=0 marks the genesis of *℘  from the ordinary *N ⊃℘  and 

cannot be considered an iteration on *℘ ). This new alternative definition (and notation) of i-primeths ( i P

containing 
i

xP  elements with 0i ≥  and *x N∈ ) has three advantages, with an accent strictly on the 

number (i) of P-on-P iterations and NOT on the general standard definition (and notation) of iterated 

functions like ( ) ( ) ( )1 1P x P x P x≡ =�
 and ( ) ( )

( )1
.. ( )

i

i i

nested functionsP
P x P x P P P x

−

� �
� �≡ =
� �
� �

� :  

1. The iteration order i is also the number of (�vertical�) it erations for producing the i-primeths from 

the 0-primeths ( )0 * *℘ =℘  (as in the original primeths definition, the standard primes were 

considered 1-primeths not 0-primeths, as if they were produced from N  using 1 vertical iteration, 

but N  doesn�t contain just primes, as * N℘ ≠ ); 

 
a. These iterations numbered by order i are easy to follow when implemented in different 

algorithms using a programming language on a computer; 

2. The concept of primes can be generalized as �i-primeths� *i℘ , with *i℘  also including *℘  as 

the special case of 0-primeths ( )0 * * ⊂℘ =℘ *i℘ ;  

3. This definition clearly separates *℘  from the ordinary N  using 0 (not 1) as a starting order (i) for 

*℘  ( )0 *℘  and considering N  as a ( )1 *− ℘  (a �bulky� ( )1 *− ℘  �contaminated� with composite 

positive integers that can be considered �(-1)-primeths� convertible to 0-primeths by different 
sieves of primes. 

 

                                                      
[6] Alternative terms for �primeths� : �higher-order prime numbers�,  �superprime number s�, �super-prime numbers�, �super-
primes�, � superprimes� or �prime-indexed primes[PI Ps]�. URL (OEIS page):  http://oeis.org/wiki/Higher -order_prime_numbers  
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a. 0 *℘  inevitably �contains� *N  by its indexes , in the sense that 0 *℘ contains all the generic 

 elements with indexes *x N∈  (an index x  that �scrolls� all *N ). The same prime may 

be part of more than one i-primeths subset *i℘ , as x  is not necessarily a prime. 

b. This slightly different definition of the i-primeths ( *i℘  containing generic 
i

xP  elements with 

0i ≥  and *x N∈ , as explained previously) is NOT a new �anomaly� and it wa s also used by 
Smarandache F. as cited by Murthy A. [47] and also by Seleacu V. and B�l�cenoiu I.  [48]. 

 

The elements of the generalized set of i-primeths *i℘ : 
 

 (alias 0-primeths) 

 (alias 1-primeths [7]) 

,  

� 

, with 

* {1,2}x N∈ −   
 

5 The Meta-conjecture VBGC - The Extension and Generalization of 
BGC as Applied on i-primeths ( )*i℘  

 

Meta-conjecture VBGC � main co-statements :  
 

1. Alternatively defining i-primeths as: 0

[0
]

x
iterations

of P on P

P P x

� �
� �= � �
� �
� �

, ( )1

[1
]

x
iteration

of P on P

P P P x

� �
� �

= � �
� �� �
� �

, 

( )( )2

[2
]

x
iterations

of P on P

P P P P x

� �
� �
� �=
� �
� �
� �

� , with ( )P x  being the x-th prime in the 

set of standard primes (usually denoted as ( )P x  or xP  and equivalent to 0
xP  alias �0-primeths�) 

and the generic 
i

xP  being named the generic set of i-primeths (with� i � being  the  

�iterative�/recursive order of that i-primeth which  measures the number of P-on-P iterations 
associated with that specific i-primeth subset).  

2. The inductive variant of (the meta-conjecture) VBGC (iVBGC) proposed in this paper states 
that:  

�All even positive integers ( ),2 2 fx a bm ⋅≥  AND (also) ( )2 ,2 2 fx a bm ≥ ⋅ , can be 

                                                      
[7] Primes subset (3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, �) , also known as sequence A006450 in OEIS.  URL (OEIS page): 
https://oeis.org/A006450 

0
xP

( ) ( ) ( ) ( ){ }0 0 0 0 0
1 1 2 2 3 3, ,... ,...* * , x xP P P P P P P P= = = = = = =℘ =℘ = 2 3 5

( ) ( ) ( ){ }1 2

1 1 1 1
1 2 2 3 ,... ,...* ,

xp p x pP P P P P P P P= = = =℘ = = = =3 5

( ) ( ) ( ){ }
1 2

2 2 2 2
51 3 2 ,... ,...* ,

P PxPp p x pP P P P P P P P= =℘ = = = =5 11

21
1 2... ... ...

, , ..., , ...*
P PP x

i
P P P

i iterations of P i iterations of Pi iterations of P

i i i
xP P PP P P

� �
� �� �
� �
� �
� �� �

℘ = = = =

( )( )( )
( )[ 0 ]

...
i

i
x

iterations

P P P P P x
≥

� �
� �=
� �� �
� �
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written as the sum of at least one pair of DISTINCT odd i-primeths x y
a bP P> , with the 

positive integers pair ( ), , 0a b with a b≥ ≥  defining the (recursive) orders of each of those 

i-primeths pair AND the pair of distinct positive integers ( ), , 1x y with x y> >  defining 

the indexes of each of those i-primeths pair, with 

 ( )
( )
( ) ( )
( ) ( ) ( )

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)( 2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a ab a b a

a b a b a b

for a b

fx a b for a b AND a

for a b AND a OR b

+ + + +

+ + + + −

+ + + + − + −

� = =
�
�= = >�
�

≠ > >� �� 	 
�

 

and 

( )
( )
( ) ( )
( ) ( ) ( )

2

( 1)( 1)( 2)

[( 1)( 1)( 3)/ ]

( 1)( 1)(

2

2) ( 2)

2 0

, 2 0

2 0 0

a b a b

a b a b a

a b a b a

a

b

for a b

fx a b for a b AND a

for a b AND a OR b

+ + + +

+ + + + −

+ + + + − + −

� = =
�
�= = >�
�

≠ > >� �� 	 
�

.�  

a. A secondary inductive (form of) (the meta-conjecture) VBGC (siVBGC[a,0]) proposed in 

this paper states that: �All even positive integers ( )22 intm fy a⋅≥ � �	 
 , with 

( ) 4afy a e= , can be written as the sum of at least one pair of DISTINCT odd i-

primeths 
0

x y
aP P> , with the positive integers pair ( ), 0 , 0a with a >  defining the 

(recursive) orders of the i-primeths pair ( )0,x y
aP P  AND the distinct positive integers 

pair ( ), , 1x y with x y> >  defining the indexes of each of those i-primeths.�  

 
3. The analytical variant of (the meta-conjecture) VBGC (aVBGC) proposed in this paper (from 

which the previous inductive VBGC was derived) states that: �For any pair of finite positive 

integers ( ), , 0a b with a b≥ ≥  defining the (recursive) orders of an a-primeth ( )aP  and a b-

primeth respectively ( )bP ,  there will always exist a single finite positive integer 

( ), , 3a b b an n= ≥  so that, for any positive integer ,a bm n>  it will always exist at least 

one pair of  finite distinct positive integers ( ), , 1x y with x y> >  (indexes of distinct odd i-

primeths) so that: 2x y
a bP P m+ =  and a b

x yP P>  and the function 

( ) ( ) ( ), ,, , 3a b b af a b f b a n n= = = ≥  has a finite positive integer value for any 
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combination of finite positive integers ( ),a b , without any catastrophic-like infinities for 

any ( ),a b  pair of finites positive integers.� 

 

a. Important note. I have chosen the additional conditions ( ) ( )0 1a b x y≥ ≥ ∧ > > ⇔  

a b
x yP P> so that to lower the no. of lines per each Goldbach Matrix (GM) and to simplify 

the algorithm of searching  ( ),x y
a bP P  pairs, as the set aP  is much less dense that the set 

bP  

for a b>  AND the sieve using aP  (which searches an  aP  starting from 2 3m to ) finds a 

( ),a b
x yP P  pair much more quicker than a sieve using 

bP  (if a b> ). 

b. ( ) ( )0,0n= =f 0,0 3  

c. ( ) ( ) ( )1,0 0,10,1f n n= = = =f 1,0 3 ; ( )1,0f < ( )2,0 2564f = ; 

d. ( ) ( ) ( )2,0 0,20,2f n n= = = =f 2,0 2 564 ; ( )2,0f < ( )1,1f ; the conjectured sequence 

of all even integers that cannot be expressed as the sum of two distinct 2-primeth and 0-primeth 

2 0
x yP P>  was also submitted to OEIS, reviewed and approved as A282251 [8] 

e. ( ) ( )1,1n= =f 1,1 40 306 ; ( )1,1f > ( )2,0 2564f = , as also predicted by 

( ) ( )1,1 2,0fx fx> ; 

f. ( ) ( ) ( )3,0 0,30,3f n n= = = =f 3,0 125 771 ; ( )3,0f > ( )2,0 2564f = , as also 

predicted by ( ) ( )3,0 2,0fx fx> ; ( )3,0f < ( )2,1 1 765 126f = , as also predicted by 

( ) ( )3,0 2,1fx fx< ; ( )3,0f > ( )1,1 =40 306f , as also predicted by ( ) ( )3,0 1,1fx fx>  

g. ( ) ( ) ( )2,1 1,21,2f n n= = = =f 2,1 1 765 126 ; ( )2,1f  > ( )3,0 125 771f = , as also 

predicted by ( ) ( )2,1 3,0fx fx> ; ( )2,1f < ( )2,2 161 352 166f = , as also predicted by 

( ) ( )2,1 2,2fx fx< ; 

h. ( ) ( ) ( )4,0 0,40,4f n n= = = =f 4,0 6 204 163 ; ( )4,0f  > ( )3,0 125 771f = , as also 

predicted by ( ) ( )4,0 3,0fx fx> ; ( )4,0f < ( )2,2 161 352 166f = , which is also 

predicted by ( ) ( )4,0 2,2fx fx< ; 

                                                      
[8] Official page at URL: https://oeis.org/A282251; Complete review at URL: https://oeis.org/draft/A282251; Review history at URL: 
https://oeis.org/history?seq=A282251 
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i. ( ) ( ) ( )3,1 1,31,3f n n= = = =f 3,1 32 050 472 ; ( )3,1f > ( )2,1 1 765 126f = , as also 

predicted by ( ) ( )3,1 2,1fx fx> ; ( )3,1f > ( )4,0 6 204 163f =  as also predicted by 

( ) ( )3,1 4,0fx fx> ; ( ) ( )3,1 2,2fx fx>  erroneously predicts that ( )3,1f ; 

( ) 133,1 7.04 10fx ≅ × overestimates  the computed ( )3,1f ; 

j. ( ) ( )2,2n= =f 2,2 161 352 166 ; ( )2,2f  > ( )2,1 1 765 126f = , as also predicted by

( ) ( )2,2 2,1fx fx> ; ( )2,2f  > ( )4,0 6 204 163f = , as also predicted by

( ) ( )2,2 4,0fx fx> ; ( )2,2f  < ( )5,0 260 535 479f = , which is also predicted by 

( ) ( )2,2 5,0fx fx< ; 

k. ( ) ( ) ( )5,0 0,50,5f n n= = = =f 5,0 260 535 479 ; ( )5,0f > ( )4,0 6 204 163f = , 

as also predicted by ( ) ( )5,0 4,0fx fx> ; however, ( ) 115,0 5.5 10fx ≅ ×  overestimates 

( )5,0f  over 102 10m = , as also in the case of ( ) 133,1 7.04 10fx ≅ ×  overestimating 

( )3,1f ; 

l. ( ) ( ) ( )4,1 1,41,4f n n= = = =f 4,1 ?  (computing in progress); ( )f 4,1  is expected to be 

smaller than ( )3,2f  according to the prediction ( ) ( )4,1 3,2fx fx< ; obviously ( )f 4,1  is 

expected to be larger than ( )3,1f  as also according to the prediction ( ) ( )4,1 3,1fx fx> ; 

( )f 4,1  is ALSO expected to be larger than ( )3,3f  as according to the prediction 

( ) ( )4,1 3,3fx fx> ; however, ( ) 204,1 1.5 10fx ≅ ×  surely overestimates ( )4,1f ; 

m. ( ) ( ) ( )3,2 2,32,3f n n= = = =f 3,2 ? (computing in progress); ( ) 243,2 2.4 10fx ≅ ×  

surely overestimates ( )3,2f ; 

n. ( ) ( )3,3n= =f 3, 3 ?  (computing in progress); ( ) 133,3 3.5 10fx ≅ ×  surely overestimates 

( )3,3f  over 102 10m = ; 

o. �[working progress on other higher indexes function  values] 

p. The 2D matrix/array of the finite values ( ),f a b  is a conjectured meta-sequence of integers 

and was also proposed to OEIS, BUT rejected in the meantime, with the main argument that 
OEIS doesn�t accept conjectured meta-sequences (the sequence of f values was considered �too 
ambitious�) and that it hadn�t an �appropriate form �, although OEIS doesn�t mention this (main) 
exclusion-criterion (applied to VBGC f[a,b] meta-sequence) explicitly in their publishing policy 
[9]. 

 

                                                      
[9] Review history at URL: https://oeis.org/history?seq=A281929&start=50 (last page URL); Review history in pdf downloadable 
format at URL: http://dragoii.com/VBGC_A281929_OEIS_rejection_history.pdf 
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4. Interestingly, ( ),f a b  applied on [ ]0,5a ∈  and [ ]0,5b∈  has its values in the set 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

� �� �
� �
� �� �

3 , 2564 , 40 306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479
 which has an exponential 

(relatively) compact pattern such as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, ,
≅
=FE 1.1 , 7.8 , 10.6 , 11.7 , 14.4 , 15.6 , 17.3 18.9 19.4 , with a relatively 

constant geometric progression (of about 1.2 0.15± ) between its last 7 elements so that  

.

 

The single exception of this rule is the gap between the exponents 1.1≅  and 7.8≅ .  See the next 
figures. 

 

 
 

Fig. D-1. The exponential pattern-1 of  the ( ),f a b  values for [ ]0,5a ∈  and [ ]0,5b∈  
  

 
 

Fig. D-2. The exponential pattern-2 of  the ( ),f a b  values for [ ]0,5a ∈  and [ ]0,5b∈  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
19.4 / 18.9 18.9 / 17.3 17.3 / 15.6 15.6 / 14.4

14.4 / 11.7 11.7 / 10.6 10.6/ 7.8

≅ ≅ ≅ ≅≅ ≅ ≅ ≅

≅ ≅ ≅ ≅ ≅ ≅

� �≅ ≅ ≅ ≅
�  ≅
� ≅ ≅	 


1.2 –0.15
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a. ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

� �� �
� �
� �� �

3 , 2 564 , 40 306 , 125 771 , 1 765 126 ,
F =

6 204 163 , 32 050 472 161 352 166 , 260 535 479

 has ALSO a correspondent matrix in 

which a  is a column index and b  is a line index  

 and a 

matrix of exponents in which a  is also a column index and b  is also a line index 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0,0 1,0 0,1 2,0 0,2 3,0 0,3 4,0 0,4 5,0 0,5

0,1 1,0 1,1 2,1 1,2 3,1 1,3 4,1 1,4 5,1 1,5

0,2 2,0 1,2 2,1 2,2 3,2 2,3 4,2 2,4 5,2 2,5

0,3 3,0 1,3 3,1 2,3 3,2 3,3 4,3 3,4 5,3
,f a b

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n
ME LN

n n n n n n n n n n

= = = = =

= = = = =

= = = = =
=

= = = = ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3,5

0,4 4,0 1,4 4,1 2,4 4,2 3,4 4,3 4,4 5,4 4,5

5,50,5 5,0 1,5 5,1 2,5 5,2 3,5 5,3 4,5 5,4

n

n n n n n n n n n n n

n n n n n n n n n n n

� �
� 
� 
� 
� 
� 
� =
� 
� = = = = =� 
� = = = = =� 	 
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b. ( ),f a b

ME  can be graphed as a 2D surface in a 3D space: see the next figure. 
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Fig. D-3. The 3D graph of 

 

c. The previous matrices generate half
regions, as all elements tend to become greater when: moving on the lines from left to right, 
moving on the columns from up to down, moving on the diagonals, from 
exponents from each column of 

on diagonals, from left to center
 

Fig. D-4. The almost linear growth of 
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3. The 3D graph of 
( ),f a b

ME  cell values for [ ]0,5aÎ  and [ ]0,5bÎ  

The previous matrices generate half-dome-like graphs, apparently with no closed “depression” 
regions, as all elements tend to become greater when: moving on the lines from left to right, 
moving on the columns from up to down, moving on the diagonals, from sides to the center. The 
exponents from each column of 

( ),f a b
ME  tend to grow almost linearly from up to down (but also 

on diagonals, from left to center-right and vice versa): see the next figure. 
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